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Introduction

Incompressible two-phase flows

�

gas-liquid

�

liquid-liquid
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Applications

�

Chemical industry (separation, boiling, ..)

�

Combustion (fuel injectors)

�

Printing industry (inkjets)

�

Coating (spray paint, ..)

�

Maritime application (green water loading, water waves)
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Applications: Spray combustion

(Ham et al. 2003)
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Theory
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Theory (cont’d.)

�

Conservation of mass in phase "0" and "1"

��� ���� � � 	

�

Conservation of momentum in phase "0" and "1"


 ���� �

� � ���� � � � �� � � � 


�
��� �

��� �� � � ��� �� � � � ���� � � � ���� � � �

�

Coupling between phase "0" and "1" through interface conditions
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Interface conditions

�

Continuity of velocity

� � � � �

�

Continuity of stresses

� � � � �� � � �� � � � � � � � � � � � � � � � � � � �

� � � � �� � � �� � � � � � � � � � � � � � � � � � � � � � � � 
 � � � � � �� �� �� 	


� � 
�� ��� � 
 �
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Interface conditions (cont’d).

�

In principle � is discontinuous and thus also �

�

Regularization of � gives

� � � � � � � � � �

�

Reduction of interface conditions to

� � � 
 � � � � � �� � � 	

�

Surface tension force regularized into a volume force (Brackbill et al., 1992):

� � � � � � � � �� ��

�

Interface normal � and curvature � have to be known away from the interface
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Computational method

Spatial discretization, with variable � and �:

�

Cartesian and uniform mesh

�

Marker and Cell layout

�

Discontinuous density, water/air � � � �� � � 	 	 	 � �

�

Regularization of viscosity

�

Continuous surface force approach � no interface
conditions

x∆

z∆

y∆

z
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x

u

w

v

p ρ µ, , , ,φ ψ

Explicit time-integration for fluid flow and interface advection equations

�

Navier-Stokes: pressure correction method
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Surface representation

Required for calculation of ��
�
� and �

Front tracking:

�

Marker particles (Tryggvason and coworkers)

Front capturing:

�

Volume of Fluid (VOF) (Rider & Kothe 1998, Scardovelli & Zaleski 1999,
Renardy & Renardy 2002, Pilliod & Puckett 2004)

�

Levelset (LS) (Sussman et al. 1994, Chang et al. 1996, Sethian 1999)

�

LS/VOF (Sussman & Puckett 2000)

Front tracking/capturing:

�

LS/Marker particles (Enright et al. 2003)
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Volume of Fluid

Advantage

�

Mass conserving interface advection (numerically by construction)

Disadvantage

�

Elaborate reconstruction of interface position and curvature, i.e. density, viscosity
and surface tension.
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Levelset

Advantage

�

Straightforward extraction of interface position, computation of curvature, i.e.
density, viscosity and surface tension

Disadvantage

�

Numerical implementation of interface advection is not mass conserving



15

LS advection


 �

� � � � � � 	

�

Numerical implementation � dissipation

�� 
 � �

� � � 
 �
� ��� 
 � ����� �

�	�

�

Numerical dissipation � Mass loss/gain

Advection

Exact

Numeric

�

Apply small corrections to LS function

� � 
 � � �� � � �
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How to calculate

� �

�

VOF reconstructed from LS

� � � � � � �
�

� � � �

�

VOF advection is mass conserving by construction

� � � � � 
 �

�

Invert (Newton-Raphson) with

� �

as initial guess

� � 
 � � � � � � 
 �
�

� � � 
 � �

�

Mass conservation, up to a specified �
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Comp. Meth. Overview

�

Velocity update � �
�

� � � � �

�

LS advection

� �
�

� � � ��

�

VOF advection

� �
�

� � � � � � � 
 �

�

LS correction

� �
�

� � 
 � � � � 
 �

�

Poisson equation

� �
�

��� � � � � �

�

Solution with PCG

�

Pressure correction � � � � � 
 �

A Mass-Conserving Level-Set (MCLS) Method for Modeling of Multi-Phase Flows, S.P. van der Pijl, A. Segal, C.Vuik, &

P. Wesseling (accepted: Int. Jour. for Num. Meth. in Fluids)
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Results: Falling water drop

Serial code, numerical resolutions possible up to

�� � �

gridpoints

Relative mass error <

� � � 	 � �
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Stationary bubble/Laplace problem

�

Exact solution: Pressure constant, velocity zero

�

Numerical solution: Pressure perturbed, velocity non-zero

-0.5 -0.25 0 0.25 0.5

x

-0.5

-0.25

0

0.25

0.5

z



20

Surface tension

�

Similar implementation/problems for all structured-grid methods

�

Surface tension in N.S. equations: � � ��

(Brackbill et al. 1992)

�

Sources of error:

1. Delta function approximation of the discontinuity

2. Computation of curvature: � � ���
� �

� � � � effect of
� �

�

Resulting symptoms: Parasitic currents for a stationary bubble (Laplace problem)
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Complete VOF/Level-Set reconstruction (1)

Simultaneously solve:

� � � � �
�

� � �

and

� � � � � �

� �� 	

� � 
 � � �� � 
� �� � ��� �

� � � � � � �

solved by 1st order Fast Marching method (Sethian 1999)

� � � � � �
�

� � �

solved up to machine-precision
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Complete VOF/Level-Set reconstruction (2)
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Remarks

� � � � � � �

ensures a unique solution for Level-Set function

�

’Classic’ re-initialization (Sussman 1994) no longer required

�

Surface tension representation improved, but not sufficient yet

�

Immediate future: obtain higher order solution to

� � � � � �
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Parallelization of the code

�

Parallel code required for meshes larger than

� � � �

up to

� � � �

�

Approach: Message Passing Interface (MPI) library with domain decomposition

�

Parallel Poisson solver

�

CG without pre-conditioner

�

Quality of initial guess important

�

Code runs on SGI Origin 3800 or SGI Altix 3700 (Teras & Aster) at Sara
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Parallelization: Domain decomposition

x

y z

x

y z
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Parallel performance

� � � �

�

"Home made Beowulf cluster" with gigabit over copper

�

Supercomputers TERAS/ASTER

#NCPU Beowulf Aster

1 44

2 40

4 30

8 17

16 7

32 8
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Visualization

�

Visualization of very large time-dependent data sets is a huge problem.

�

To visualize the boundaries between fluids (phase fronts) we need

�

interactive isosurface extraction and rendering of large time-varying data sets.

Time

Iso surf. value
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Data structure

A data structure for

�

Interactive isosurface extraction

�

Time-dependent data sets

�

“Incremental” surfaces

�

Use of temporal coherence

�

Fast rendering

�

No need to keep original data in memory
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Temporal Hierarchical Index Tree (Shen, 1998)

�

Each node represents a certain time range.

�

Each node contains “constant” cells for that time range.

�

Cells in one node need not be stored below that node.

�

The difference between (consecutive) time steps can be found by backtracking up
the tree.

�

In each node, a (possibly large) number of cells must be stored.
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Out-of-core tree building

�

During creation of an index tree, we need the entire temporal evolution of every cell,
because we want to make use of temporal coherence as much as possible.

�

Instead of using

� �
�

�
�

� � -files, with each file representing a different time step, we
use

� �
�

�
�

� �

-files

�

All time-dependent data for a cell is in one single file.

�

Split the data set in �-direction and create multiple trees.

�

For example, for a

� �� �

data set, we could create

�

trees of

� � � � � �� � ��

.
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Out-of-core visualization

�

During visualization, all sub-trees have to be read to reconstruct the entire spatial
domain, but not complete.

�

A time window in is kept main memory, centered around the current time step.

�

This approach, alleviates the huge memory requirements for the visualization
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Data sets

Data set Bubbles Clouds

Resolution

� � � � � �� � � � � � � � � � � � � � 	
# Time steps

�� � 	 	
Raw data size

� � � �

MB

� 	 	 	
MB

# THI Trees

� � � � �

xy-resolution

� �� � � � � � �� � � � � � � � � �� � �� � � �� �

z-resolution

� � �� � 	 � 	

# Time steps

�� �� � 	 	 � 	 	

Total size

� � � 	

MB

� � � 	
MB

�� �

MB

� � 	

MB
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Visualization tool
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Rendering benchmarks
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Playing benchmarks
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Some high resolution results

� � � �

(1)

X Y

Z
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Some high resolution results

� � � �

(2)
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Closing remarks

�

A mass conserving VOF/LS method has been developed

�

Large scale flow simulations of complicated two-phase problems can be performed

�

Collaboration between three disciplines has been very productive

�

Scientific "freedom" of the NWO-CS program is very stimulating, new research lines
can be developed.
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