Numerical simulation of two-phase flows using a combined VOF / Levelset method

1

Delft University of Technology

Research team

• Sander van der Pijl, Kees Vuik & Guus Segal

Department of Applied Mathematical Analysis Faculty of Electrical Engineering, Mathematics and Computer Science

Benjamin Vrolijk & Frits Post

Department of Mediamatics

Faculty of Electrical Engineering, Mathematics and Computer Science

Emil Coyajee & Bendiks Jan Boersma

Laboratory of Aero- & Hydrodynamics

Faculty of Mechanical Engineering

Outline

- Introduction
- Theory
- Numerical Method
- Parallel Implementation
- Visualization
- Closing remarks

Introduction

Incompressible two-phase flows

- gas-liquid
- liquid-liquid

Applications

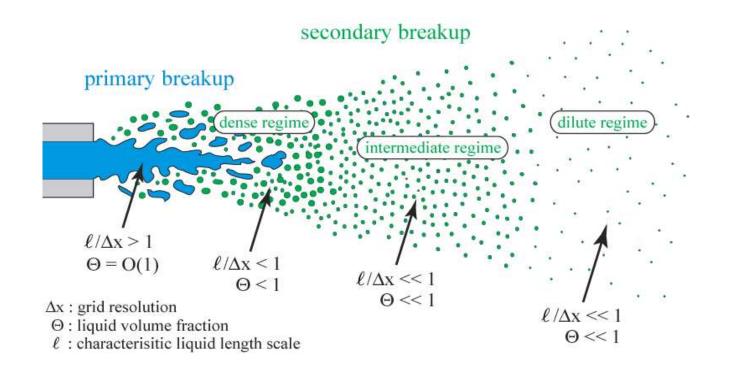
- Chemical industry
- Combustion
- Printing industry
- Coating (spray paint, ..)
- Maritime application

(inkjets)(spray paint, ..)(green water loading, water waves)

(separation, boiling, ..)

(fuel injectors)

Applications: Spray combustion



(Ham et al. 2003)

Theory

gas bubble in water

Phase 'o' $\frac{U_0}{P_0} = velocity$ $P_0 = Pressure$ Po = density No = dynamic viscosity Phase "1" Pis Piski -Surface tension = f(curvature)

Theory (cont'd.)

• Conservation of mass in phase "0" and "1"

 $\nabla \cdot \mathbf{u_{0,1}} = 0$

• Conservation of momentum in phase "0" and "1"

$$\frac{\partial \mathbf{u}_{0,1}}{\partial t} + \mathbf{u}_{0,1} \cdot \nabla \mathbf{u}_{0,1} = -\frac{1}{\rho_{0,1}} \nabla p_{0,1} + \nabla \mu_{0,1} \left(\nabla \mathbf{u}_{0,1} + \nabla \mathbf{u}_{0,1}^T \right)$$

• Coupling between phase "0" and "1" through interface conditions

Interface conditions

• Continuity of velocity

 $\mathbf{u}_0 = \mathbf{u}_1$

• Continuity of stresses

$$\mu_0(\nabla \mathbf{u_0} + \nabla \mathbf{u_0}^T) \cdot \mathbf{t} = \mu_1(\nabla \mathbf{u_1} + \nabla \mathbf{u_1}^T) \cdot \mathbf{t}$$
$$\mu_0(\nabla \mathbf{u_0} + \nabla \mathbf{u_0}^T) \cdot \mathbf{n} = \mu_1(\nabla \mathbf{u_1} + \nabla \mathbf{u_1}^T) \cdot \mathbf{n} + (p_1 - p_0) + \underbrace{\sigma \kappa \cdot \mathbf{n}}_{surf. tens.}$$

Interface conditions (cont'd).

- In principle μ is discontinuous and thus also ${f u}$
- Regularization of μ gives $\nabla \mathbf{u_0} = \nabla \mathbf{u_1} \rightarrow \nabla \mathbf{u}$
- Reduction of interface conditions to

$$(p_1 - p_0) + \sigma \kappa \cdot \mathbf{n} = 0$$

• Surface tension force regularized into a volume force (Brackbill et al., 1992):

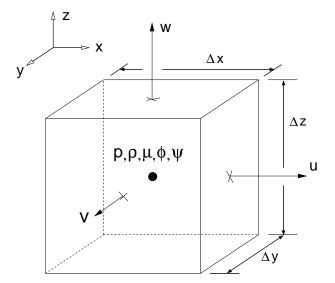
$$\int \int \sigma \kappa \mathbf{n} dS = \int \int \int \sigma \kappa \nabla H dV$$

• Interface normal ${f n}$ and curvature κ have to be known away from the interface

Computational method

Spatial discretization, with variable μ and ρ :

- Cartesian and uniform mesh
- Marker and Cell layout
- Discontinuous density, water/air $\rho_0/\rho_1 = 1000/1$
- Regularization of viscosity
- Continuous surface force approach → no interface conditions



Explicit time-integration for fluid flow and interface advection equations

• Navier-Stokes: pressure correction method

Surface representation

Required for calculation of ho,μ and κ

Front tracking:

• Marker particles (Tryggvason and coworkers)

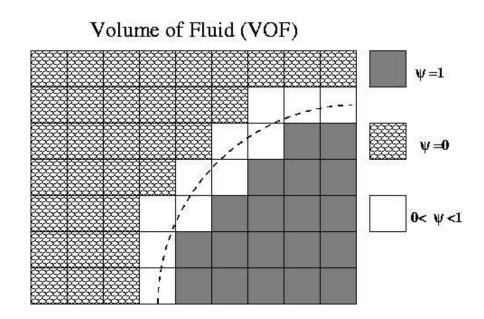
Front capturing:

 Volume of Fluid (VOF) (Rider & Kothe 1998, Scardovelli & Zaleski 1999, Renardy & Renardy 2002, Pilliod & Puckett 2004)
 Levelset (LS) (Sussman et al. 1994, Chang et al. 1996, Sethian 1999)
 LS/VOF (Sussman & Puckett 2000)

Front tracking/capturing:

• LS/Marker particles (Enright et al. 2003)

Volume of Fluid



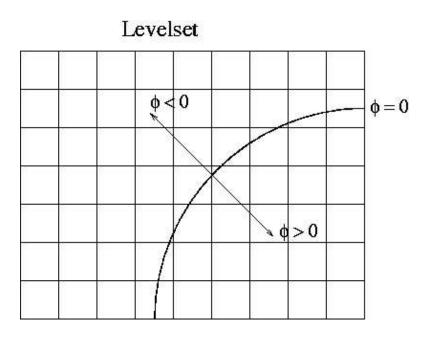
Advantage

• Mass conserving interface advection (numerically by construction)

Disadvantage

• Elaborate reconstruction of interface position and curvature, i.e. density, viscosity and surface tension.

Levelset



Advantage

• Straightforward extraction of interface position, computation of curvature, i.e. density, viscosity and surface tension

Disadvantage

• Numerical implementation of interface advection is not mass conserving

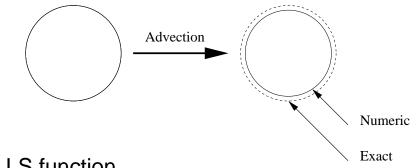
LS advection

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \nabla \phi = 0$$

• Numerical implementation \rightarrow dissipation

$$\frac{\phi^* - \phi^n}{\Delta t} = -u \frac{\phi_i^n - \phi_{i-1}^n}{\Delta x}$$

• Numerical dissipation \rightarrow Mass loss/gain



• Apply small corrections to LS function

$$\phi^{n+1} = \phi^* + \delta\phi$$

How to calculate $\delta\phi$

• VOF reconstructed from LS

$$\psi^n = f(\phi^n, \nabla \phi^n)$$

• VOF advection is mass conserving by construction

$$\psi^n \to \psi^{n+1}$$

• Invert (Newton-Raphson) with ϕ^* as initial guess

$$\psi^{n+1} = f(\phi^{n+1}, \nabla \phi^{n+1})$$

• Mass conservation, up to a specified ϵ

Comp. Meth. Overview

- Velocity update $u^n, \phi^n \to u^*$
- LS advection $\phi^n, u^n \to \phi^*$
- VOF advection $\psi^n, \phi^n u^n \to \psi^{n+1}$
- LS correction $\phi^*, \psi^{n+1} \rightarrow \phi^{n+1}$
- Poisson equation

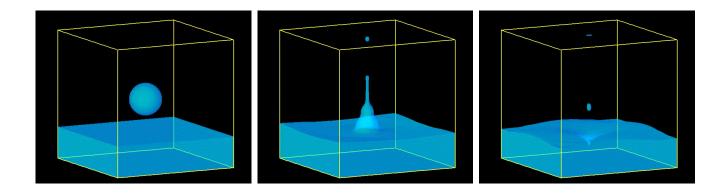
$$abla rac{1}{
ho}
abla p =
abla \cdot u^*$$

- Solution with PCG
- Pressure correction $u^* \rightarrow u^{n+1}$

A Mass-Conserving Level-Set (MCLS) Method for Modeling of Multi-Phase Flows, S.P. van der Pijl, A. Segal, C.Vuik, & P. Wesseling (accepted: Int. Jour. for Num. Meth. in Fluids)

Results: Falling water drop

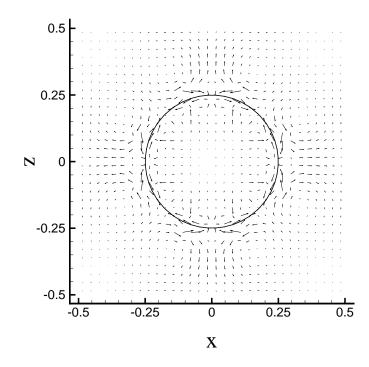
Serial code, numerical resolutions possible up to 128^3 gridpoints



Relative mass error < $1\cdot 10^{-4}$

Stationary bubble/Laplace problem

- Exact solution: Pressure constant, velocity zero
- <u>Numerical solution:</u> Pressure perturbed, velocity non-zero



Surface tension

- Similar implementation/problems for all structured-grid methods
- Surface tension in N.S. equations: $\sigma \kappa \nabla H$ (Brackbill et al. 1992)
- Sources of error:
 - 1. Delta function approximation of the discontinuity
 - 2. Computation of curvature: $\kappa = \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|}$ effect of $\delta \phi$
- Resulting symptoms: Parasitic currents for a stationary bubble (Laplace problem)

Complete VOF/Level-Set reconstruction (1)

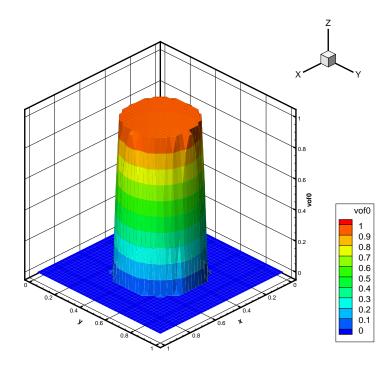
Simultaneously solve:

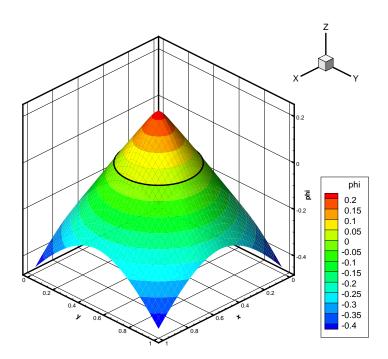
$$\psi = f(\phi, \nabla \phi)$$
 and $|\nabla \phi| = 1$

distance function

- $|\nabla \phi| = 1$ solved by 1st order Fast Marching method (Sethian 1999)
- $\psi = f(\phi, \nabla \phi)$ solved up to machine-precision

Complete VOF/Level-Set reconstruction (2)





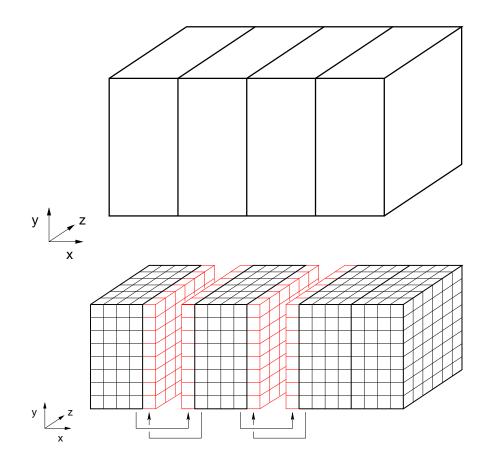
Remarks

- $|\nabla \phi| = 1$ ensures a unique solution for Level-Set function
- 'Classic' re-initialization (Sussman 1994) no longer required
- Surface tension representation improved, but not sufficient yet
- Immediate future: obtain higher order solution to $|\nabla \phi| = 1$

Parallelization of the code

- Parallel code required for meshes larger than 128^3 up to 512^3
- Approach: Message Passing Interface (MPI) library with domain decomposition
- Parallel Poisson solver
 - CG without pre-conditioner
 - Quality of initial guess important
- Code runs on SGI Origin 3800 or SGI Altix 3700 (Teras & Aster) at Sara

Parallelization: Domain decomposition



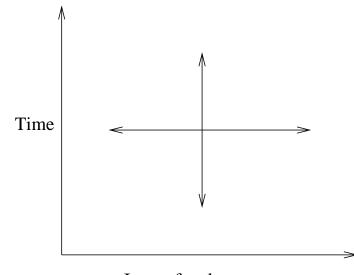
Parallel performance 128^3

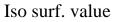
- "Home made Beowulf cluster" with gigabit over copper
- Supercomputers TERAS/ASTER

#NCPU	Beowulf	Aster
1		44
2		40
4		30
8		17
16		7
32		8

Visualization

- Visualization of very large time-dependent data sets is a huge problem.
- To visualize the boundaries between fluids (*phase fronts*) we need
 - interactive isosurface extraction and rendering of large time-varying data sets.



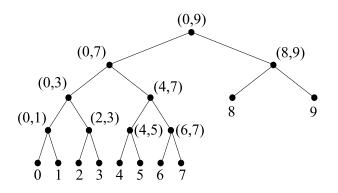


Data structure

A data structure for

- Interactive isosurface extraction
- Time-dependent data sets
- "Incremental" surfaces
- Use of temporal coherence
- Fast rendering
- No need to keep original data in memory

Temporal Hierarchical Index Tree (Shen, 1998)



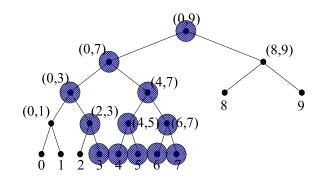
- Each node represents a certain time range.
- Each node contains "constant" cells for that time range.
- Cells in one node need not be stored below that node.
- The difference between (consecutive) time steps can be found by backtracking up the tree.
- In each node, a (possibly large) number of cells must be stored.

Out-of-core tree building

- During creation of an index tree, we need the entire *temporal evolution* of every cell, because we want to make use of temporal coherence as much as possible.
- Instead of using (x, y, z)-files, with each file representing a different time step, we use (x, y, t)-files
- All time-dependent data for a cell is in one single file.
- Split the data set in *z*-direction and create multiple trees.
- For example, for a 256^3 data set, we could create 8 trees of $256 \times 256 \times 32$.

Out-of-core visualization

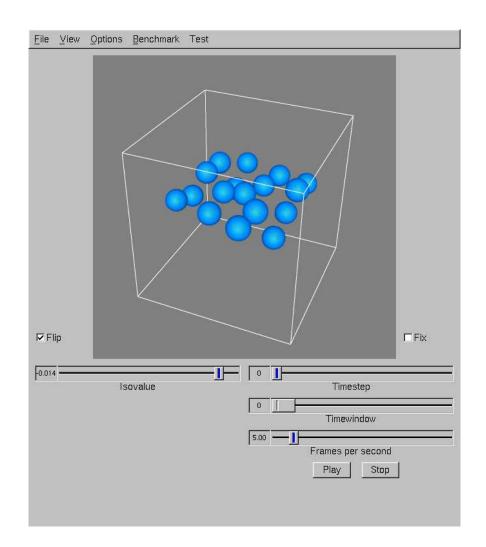
- During visualization, all sub-trees have to be read to reconstruct the entire *spatial* domain, but not complete.
- A *time window* in is kept main memory, centered around the current time step.
- This approach, alleviates the huge memory requirements for the visualization



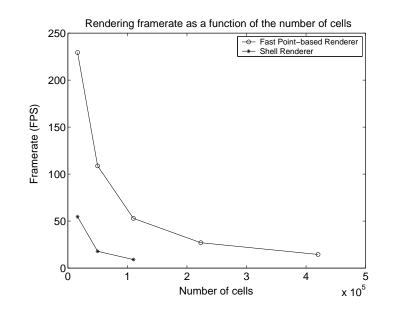
Data sets

Data set	Bubbles		Clouds	
Resolution	$256 \times 256 \times 256$		$128 \times 128 \times 80$	
# Time steps	39		600	
Raw data size	4992~MB		3 000 MB	
# THI Trees	16	8	6	8
xy-resolution	256×256	256×256	128×128	128×128
z-resolution	16	32	80	10
# Time steps	39	39	100	600
Total size	3170 MB	1 630 MB	824 MB	750 MB

Visualization tool

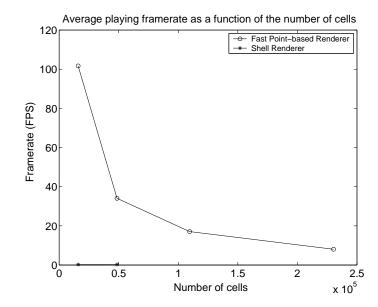


Rendering benchmarks



- 53 FPS for over 110,000 cells
- 14 FPS for over 420,000 cells
- Even 230 FPS for 16,000 cells

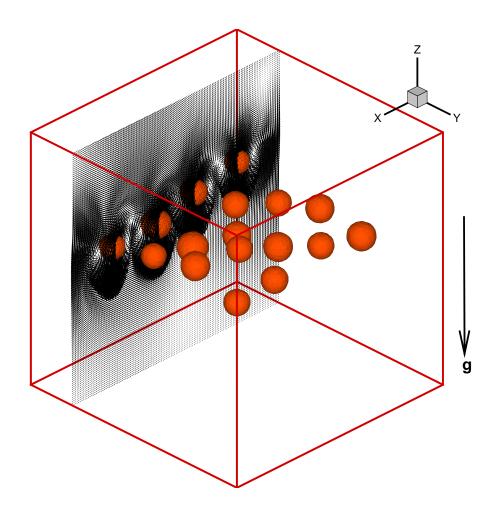
Playing benchmarks



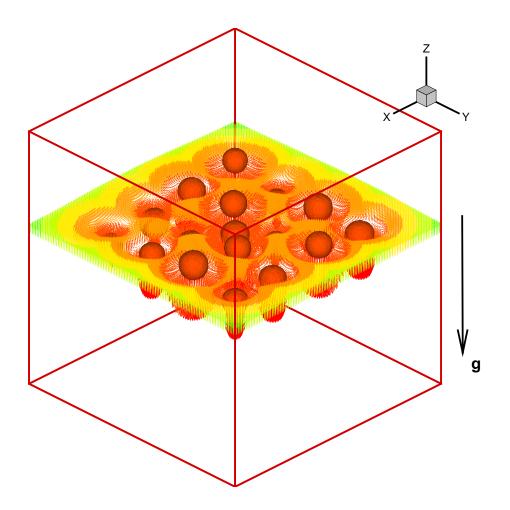
Extraction and rendering from all time steps

- 17 FPS (= time steps per second) for over 110,000 cells
- 8 FPS (= time steps per second) for over 230,000 cells
- As high as 101 FPS (= time steps per second) for 16,000 cells

Some high resolution results 256^3 (1)



Some high resolution results 256^3 (2)



Closing remarks

- A mass conserving VOF/LS method has been developed
- Large scale flow simulations of complicated two-phase problems can be performed
- Collaboration between three disciplines has been very productive
- Scientific "freedom" of the NWO-CS program is very stimulating, new research lines can be developed.

